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Abstract

The fourth-millennium state formation process in Mesopotamia was intimately
linked to accounting and to a writing system created exclusively as support for
accounting. This triple link between the state, mathematics and the scribal craft
lasted until the end of the third millennium, whereas the connection between
learned scribehood and accounting mathematics lasted another four hundred
years. Though practical mathematics was certainly not unknown in the
Greco-Hellenistic-Roman world, a similar integration was never realized.

Social prestige usually goes together with utility for the power structure (not
to be confounded with that mere utility for those in power which characterizes
a working and tax/tribute-paying population), and until the 1600 BCE scribes
appears to have enjoyed high social prestige.

From the moment writing and accounting was no longer one activity among
others of the ruling elite (c. 2600 BCE) but the task of a separate profession, this
profession started exploring the capacity of the two professional tools, writing
and calculation. Within the field of mathematics, this resulted in the appearance
of “supra-utilitarian mathematics”: mathematics which to a superficial inspection
appears to deal with practical situations but which, without having theoretical
pretensions, goes beyond anything which could ever be encountered in real
practice. After a setback in the late third millennium, supra-utilitarian mathemat-
ics reached a high point – in particular in the so-called “algebra” during the
second half (1800–1600) of the “Old Babylonian” period.

Analysis of the character and scope of this “algebraic” discipline not only
highlights the difference between theoretical and high-level supra-utilitarian
mathematics, it also makes some features of Greek theoretical mathematics stand
out more clearly.

Babylonian “algebra” was believed by Neugebauer (and by many after him
on his authority) have inspired Greek so-called “geometric algebra”. This story,
though not wholly mistaken, is today in need of reformulation; this reformulation
throws light on one of the processes that resulted in the creation of Greek
theoretical mathematics.
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Map of Mesopotamia, with ancient coast line and main rivers.

Introductory observations

When we – the older members of the present congregation – first became
acquainted with the history of early mathematics, it was conventional wisdom
(derived from what Otto Neugebauer had proposed in the 1930s) that essential
constituents of Greek geometry (in particular the so-called “geometrical algebra”)
had been created in answer to the “foundation crisis” caused by the discovery
of incommensurability. Thereby, so it was thought, the numerico-algebraic
knowledge of the Babylonians initially adopted by the Pythagoreans was saved.
Then, around the mid-70s, this story was attacked by Hellenophile historians
who knew much less than Neugebauer about Near-Eastern mathematics – and
probably also less about the global undertaking of Greek mathematics, with its
important links to astronomy.

None the less, 80 years of research have obviously changed our knowledge
about the facts on which Neugebauer’s theory was based. On one hand, the Greek
“foundation crisis” has turned out to be a projection of that of the 1920s; on the
other, Neugebauer himself already reformulated the idea about the transmission
of Near Eastern knowledge in a paper from [1963], unnoticed by his critics.
Moreover, present-day historiography of mathematics asks questions different
from those prevailing the 1930s and the 1970s. When looking today for links and
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contrasts between Greek and Babylonian mathematics we therefore have to start
anew.

The first observation to make is that the very word “Babylonian” is somewhat
inadequate. The city of Babylon only became important in the earlier second
millennium BCE, and only from then on does it make sense to characterize the
southern and central part of Mesopotamia as “Babylonia” – still excluding the
Assyrian north. Since much more is now known about the mathematics of the
third and fourth millennium than forty years ago, it is therefore more fitting to
speak of “Mesopotamian mathematics”. As we shall see, it might also be more
fitting to specify and speak of “calculation” instead of “mathematics” in broad
generality; none the less, let us accept the less specific but conventional name
“Mesopotamian mathematics”.

The social support

Mesopotamian mathematics emerged together with a pictographic script (later
transformed into the mixed logographic-syllabic “cuneiform” script) at the
beginning of the “proto-literate” period (c. 3200 BCE[1]). Together, the two
techniques were essential in the process of state formation (around the city state
Uruk), where they appear to have allowed the transformation of an earlier
redistribution system into a legitimizing ideology of “social justice” based on
numerical “just measure”, both in the distribution of land to high officials (in
arithmetical proportion in agreement with rank) and in the allocation of food
to workers.

The main constituents of the mathematics of the period are (1) a system of
metrologies, (2) an accounting system, and (3) basic area measurement. The most
important metrologies[2] are:
(a) The grain system:

<—10— <—3— <—10— <—6—

(the smallest unit is to the right, the numbers indicate the step factors);

1 I follow the “middle chronology”, as used in [Liverani 1988]. In order to facilitate
comparison with work using one of the other possible chronologies (“long”, “short” etc.)
I also indicate period or ruler names.
2 The fundamental reference for proto-literate metrologies is [Damerow & Englund 1987],
on which the following description is built.
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(b) the counting system:

<—10— <—6— <—10— <—6— <—10—

( stands for 1; as we see, the number system is already sexagesimal – or
rather, as also later on, seximal-decimal, as the Roman number system is
dual-quintal);

(c) the area system:

<—6— <—10— <—3— <—6—

(this was geared to the length system – lengths themselves were written in

the counting system; standing for the square on , that is, on 10 times
the length unit).

Besides, a particular “bisexagesimal” counting system was used for the counting
of bread or grain rations, perhaps also for portions of dairy products:

<—6— <—10— <—2— <—6— <—10— .

Similarly, particular systems were in use, for instance for malted barley, derived
from the normal grain system; and finally a calendar used for administrative
(not cultic) purposes, in which each twelve months counted as a year, and each
month was counted as 30 days irrespective of whether its real length was 29
or 30 days.

Accounting was really a

Figure 2

system: it employed a fixed
format, in which the obverse
of tablets contained for
instance allowances to single
individuals or the various
ingredients going into the
production of a batch of
beer, and the reverse the
total.[3]

The gearing of the area
to the length metrology
already shows that rectan-
gular areas were found as

3 Numerous examples can be found in [Nissen, Damerow & Englund 1993]; cf. also [Green
1981].
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the product of length and width (with the difficulties that this entails because
of the incongruity of higher units, which must have represented mathematically
normalized versions of older “natural” measures). A school text (see imminently)
betrays that the area of approximately rectangular quadrangles were determined
by means of the “surveyors’ formula”, as average length times average width.

Some 85% of the texts from the period are administrative texts. The remainder

Figure 3

consists of “lexical lists” used to train the script. A few texts apparently belonging
to the former group are not genuinely administrative but “model documents”:
school texts that are distinguishable from real administrative documents by the
absence of an official’s seal and by the appearance of rounder numbers than can
be expected in real-life management. Literary texts are absent, as is every kind
of mathematics not directly linked to administration.[4] Even boasting on the
part of the rulers (a priesthood,
not a king or a warrior aristo-
cracy) is not expressed in writing
but only in the pictures on seals
(see two typical examples in the
figure) and in prestigious temple
buildings. Writing and computa-
tion was wielded by the
priesthood, but only as a tool, not
used for social identity construc-
tion or to express professional
pride.

Temple building must have involved a fair measure of practical geometrical
knowledge, but evidence from later times suggests that this knowledge was the
possession of master builders and did not communicate with the mathematics
of the literate managers; in any case, we have no evidence for its character except
what is offered by temple groundplans (that is, nothing specific). What we know
about is only the mathematics of the literate tradition, which was purely

4 It may need emphasis that mathematical astronomical even in the most rudimentary
sense was millennia into the future. Karl Wittfogel’s “cloak of magic and astrology [...]
hedged with profound secrecy [...] bulwarking the superior power of the hydraulic
leaders” [1957: 30] is pure fantasy in as far as applied to Mesopotamia (as is much of
the rest of what he says in this undeservedly famous book).
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computational, and at the same time purely utilitarian.[5]

As an aside, we may compare with the situation of proto-classical Greece.
Even if we are generous and accept the stories of Thales as the founder of Greek
geometry, his foundation of is of course far removed in time from the beginning
of the polis system, though contemporary with the Solon reforms in Athens. The
genesis of the polis did not in any way depend on mathematics. One aspect of
the Solon reform, however, has a slight affinity with mathematics – his reform
of metrology. In the 590s BCE, Greece was already fully immersed in monetary
economy – indeed, the debt crisis this monetary economy had caused was one
of the reasons that the reforms were necessary. None the less, the reform as
described by Aristotle in The Constitution of Athens 10 (trans. E. G. Kenyon in
[Barnes 1984: II]) does not seem to build on mathematical thought at the
abstraction level of the proto-literate manager-priests:

[...] He also made weights corresponding with the coinage, sixty-three mines going
to the talent; and the odd three mines were distributed among the staters and the
other values.

The Mesopotamian proto-literate state was displaced in the initial third
millennium BCE by a system of city states competing not least for water resources,
which gave their war leaders the opportunity to take on a royal role. The first
couple of centuries has left us no written documents, but around 2700 BCE we
find the earliest royal inscription, and an abundant century later in the city state
Shuruppak the first evidence for the existence of a separate profession of scribes,
working both in the state bureaucracy (without being masters of the state, as
the proto-literate manager-priests had been) and in the elaboration of private
economic contracts.

We possess a large number of school texts from Shuruppak – some of them,
not least large lexical lists going back to the proto-literate tradition, apparently
de luxe versions made for scribes well into their professional career “in memory
of good old school days” (Aage Westenholz, personal communication). This, if
really true, would be one attestation of professional pride. Another confirmation
(also indirect) is the appearance of two new genres; literature (a hymn and a

5 From the whole duration of Mesopotamian culture we also find decoration making use
of interesting patterns: regular pentagons and hexagons, complicated knots drawn with
a single continuous line – cf. [Friberg 2007: 416–418]; but apart from the submission of
the regular polygons to computation in the Old Babylonian period, we have no hint that
this interest communicated with the literate mathematical tradition, or that it was
submitted to scrutiny for mathematical principles.
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proverb collection) and supra-utilitarian mathematics – that is, mathematics that
looks as if it has to do with the utilitarian tasks of scribes but at closer inspection
turns out to go far beyond what could ever present itself in professional practice.
Both genres can be understood as explorations of the carrying capacity of the
two professional tools, writing and computation.

One example of supra-utilitarian mathematics runs as follows [Høyrup 1982]:

1. Grain, 1 granary,

Figure 4

2. 7 s i l a
3. each man receives.
4. Its men?
5. 45,42,51
6. 3 s i l a of grain left on the hand.

The s i l a is a measure of capacity,
c. 1 litre; the “granary” is a standard
expectation – perhaps a genuine unit –
of 40 60 g u r (“tuns”), each g u r
being 8 60 sila. We are thus to dis-
tribute 1152000 s i l a in portions of 7
s i l a ; the result of the division is
164,571 men, with a remainder of 3
s i l a left on the counting board (called “the hand”).

The problem is so far removed from anything that could be encountered
in practical life that the Raymond Jestin [1937: 24] in his edition of the text
(understanding only that “men” were dealt with, in number 164,571), wondered
what could be meant – there were fewer inhabitants in the city. The merit of
the problem is that 7 does not divide any of the metrological factors, and that
the immensity of the number makes the calculation difficult as well as striking.

The problem type appears to have been fashionable; another tablet from
Shuruppak contains the same problem (but with an erroneous or incomplete
solution and thereby reveals the procedure that is used), while a text from Ebla
in Syria, of somewhat later date, contains a division of 260,000 by 33 [Friberg
1986: 16–22]. Interestingly, the methods used to solve the Ebla problem and the
Shuruppak problems are different. As Jöran Friberg [1986: 22] formulates the
matter

the “current fashion” among mathematicians about four and a half millennia ago
was to study non-trivial division problems involving large (decimal or sexagesimal)
numbers and “non-regular” divisors such as 7 and 33.
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Even though one may perhaps question Friberg’s introduction of a social category
“mathematicians”, exploration – to some extent systematic exploration – of the
potentials of computation beyond the realm of the immediately useful is certainly
involved.

In the mid-24th century, southern Mesopotamia was united in a single
territorial state, first for some decades by the ruler of Uruk, then until c. 2200
BCE under the Akkadian king Sargon and his dynasty.[6] For a while, Sargon’s
successors also subdued large parts of the Syrian area (etc.), for which reason
one often speaks of a Sargonic “empire”. Literature (supra-utilitarian writing)
was understood by Sargon to be a useful vehicle for propaganda – his daughter
Enheduanna rewrote ancient myths so as to fit the new political situation and
is thus the earliest poet in history to be known by name. As may be easily
guessed, supra-utilitarian mathematics could have no similar function, but
utilitarian mathematics was reshaped: not only was accounting made on a larger
scale than before [Foster 1982], a “royal” metrology was superimposed on the
partially divergent local metrologies. Within the scribe school, however, we have
evidence that supra-utilitarian mathematics lived on. To find the area of a
rectangular field from its length and width was certainly of real use; the inverse
problem, to find one side from the area and the other, was not – yet all the same
it was well trained (see the overview of Sargonic mathematical school texts in
[Foster & Robson 2004]).[7]

The Sargonic empire lasted no longer than the British world empire (if we
count that generously, from Nelson’s victories to the decolonization of India and
Africa). From c. 2200 BCE, the political landscape was again dominated by city
states (and by incursions from the East). The best known ruler from the following
century is Gudea of Lagash, in particular because of his building activities and
the inscriptions in statues where he boasts of these, many of them on statues
(see [Edzard 1997]). One of these shows him in the role of architect, with a
writing tablet with stylus showing the ground plan of the temple on his lap,
and a measuring rule. It is thus evidence of the kind of practical geometry which

6 Akkadian is a Semitic language, whose main dialects in later times are Babylonian
(spoken in the south) and Assyrian (spoken in the north). Its form during the Sargonic
dynasty is referred to as “Old Akkadian”. Already in Shuruppak, personal names shows
it to have been present in the otherwise Sumerian-speaking area.
7 Because of the character of the metrologies, neither problem was as straightforward as
we may be tempted to believe – we get an impression if we think of the area as expressed
in acres and of the linear dimensions as expressed in fathoms, feet and inches.

- 7 -



went into prestige building, but even less

figure 5
(Gudea)

informative about its substance than the
building remains themselves – the text on
the statue, not informative at all on this
account, is published and translated in
[Edzard 1997: 31–38].

Much more can be said about what
happened in the territorial state ruled dur-
ing the 21st century by the “Third Dynasty
of Ur” (known as “Ur III”) – between 2075
and 2025 BCE ruling also over central Iraq
and Susa in the Zagros region, thereby
becoming an “empire”. The beginnings, the
time of the founder Ur-nammu and the first
two decades of his son Shulgi, offer nothing
spectacular to our topic. However, in the
immediate wake of a military reform con-
nected to the establishment of the empire (as cause or as consequence?), an
administrative reform gave rise to two mathematical innovations, one of which
is still with us today.

The crux of the reform was a reorganization of labour. At least in the
Sumerian core of the empire, most workers were organized in labour troops
guided by overseer-scribes. These were responsible for the produce of their crew
calculated meticulously and accounted for in agreement with fixed (harsh) norms.

One innovation concerned the accounting. It can be compared (in spirit and
efficiency, not in actual shaping) to the Renaissance introduction of double instead
of single entry book-keeping. It kept track of debits (for workers allocated,
workers borrowed from other overseers, etc.) and credits (produce, workers lent
to other crews or booked out because of illness, death or flight, etc.).[8] The
system survived Ur III and was used (within a different economic framework)
during the Old Babylonian period (see presently), and then disappeared

8 It also kept track of the deficit of the overseer as it grew over the years (it almost
invariably did), which, if it could not be covered from his possessions at his death, would
result in the bereaved being taken into state slavery – see a document in [Englund 1991:
268]. The article deals with Ur III labour management in general; a more extensive
presentation is given in [Englund 1990].
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The calculation was behind the other innovation, the one that still survives:
the sexagesimal place-value system – a floating-point place-value system with
base 60. I borrow from [Høyrup 2002a: 17f]:

Its function derives from the fact that the metrological sequences were not always
arranged sexagesimally: thus [...] the n i n d a n is subdivided into 12 k ù š and the
k ù š into 30 š u . š i – no factor 60 occurs. If, for instance, a platform had to be built
to a certain height and covered by bricks and bitumen, a “metrological table” had
to be used to transform the different units of length into sexagesimal multiples of
the n i n d a n and k ù š , allowing the determination of the surface and the volume
in the basic units s a r and [volume] s a r . A list of “constant coefficients” ( i g i . g u b )
would give the amount of earth carried by a worker in a day over a particular
distance, the number of bricks to an area or volume unit, and the volume of bitumen
needed per area unit – all expressed in basic units (if no transformation into basic
units had taken place, different coefficients for the bitumen would have had to be
used for small platforms whose dimensions were measured in k ù š and for large
ones measured in n i n d a n ). With these values at hand the number of bricks and
the amount of bitumen as well as the number of man-days required for the
construction could be found by means of sexagesimal multiplications and divisions –
once again facilitated by recourse to tables, this time tables of multiplication and of
reciprocal values. Finally, renewed use of metrological tables would allow the
calculator to translate the results of the calculations into the units used in technical
practice.[9]

We do not know whether the place-value principle was invented during Ur III –
as shown by Marvin Powell [1976], the idea appears to have been “in the air”
for centuries (it was probably an easy transfer from the counting board, in use
since Shuruppak at least); however, all texts that suggest the idea contain errors,
suggesting that the system was not there. And indeed, the system was useless
unless supported by mass production of arithmetical and technical tables[10]

9 The n i n d a n is the basic unit for horizontal distance (c. 6 m), the k ù š (cubit, c. 50 cm)
that for vertical distance. The s a r is 1 n i n d a n 2 when used as a surface unit and
(1 n i n d a n 2 kùš) when measuring volumes.

The metrological and arithmetical tables were learned by heart in school; later on,
scribes had no need to consult the physical specimens.
10 The fundamental arithmetical tables listed reciprocals and products (technical constants
were chosen so as to have a finite and mostly simple sexagesimal reciprocal, and so
division could be performed as multiplications by the reciprocal). At least in Old
Babylonian times, lists of squares and of the square and cube roots of perfect squares
respectively cubes were also found (and even a list called “equalside one appended”,
confronting n and n2 (n+1). They were evidently not needed for the usefulness of the place-
value notation, but the existence of square tables (in length and area metrology) from
Shuruppak and the Old Akkadian period suggests their place-value equivalent to have
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and mass teaching of how to apply them – which on the other hand made no
sense if the system was not in use. Only a centralized decision enforced by a
centralized power could get around this egg-and-hen problem – and this is likely
to have happened as part of Shulgi’s administrative reform.[11]

In hymns written in his name king Shulgi boasts (among various incredible
feats) of having gone to school from early age, where he learned writing; only
three Mesopotamian kings do as much, and only for the last of them (Assurbani-
pal, on whom below) do we have evidence that the claim is justified. Shulgi also
learned mathematics – that is, subtraction, addition, counting and accounting.[12]

Not a word about multiplication or reciprocals! And certainly not about any
more complex matters, except to the extent they are supposed to inhere silently
in accounting (as multiplication may perhaps have been). Striking as this is, it
is probably symptomatic. Not only are the only school texts known from the
time once again model documents, as had been the case before the emergence
of the scribal profession; this could after all be the result of excavation accidents.
More telling is what can be derived from the mathematical terminology of the
subsequent Old Babylonian times, when the language of the school had become
Akkadian, whereas that of Ur III was still Sumerian: terms that concern calculation
may appear in syllabic Akkadian but also often be written with a “Sumerogram”,
that is, a word sign originally belonging within the Sumerian script but in Old
Babylonian times probably read in Akkadian (as the originally Latin word sign
viz is now read “namely” by English speakers). But in order to structure a
problem – with a statement presenting givens and question, and a procedure
description with a well-defined architecture and a way to announce results –
a whole supplementary terminology is required. The constituents of this
terminology are invariably written in syllabic Akkadian within the mathematical

been created together with the implementation of the place-value system.
11 The system was used for intermediate calculations, which have normally disappeared,
and in the tables that were used for training it, which are very difficult to date paleo-
graphically. However, a few tables have been found together with dated Ur III texts, for
which reason use during Ur III is now certain.

During the Old Babylonian period, place-value numbers were also used in mathemat-
ical school texts, and in the first millennium BCE in astronomical tables. Because of its
floating-point character, the place-value system could evidently not serve in final
accounting or other legally meaningful documents.
12 Hymn B, l. 13–19, ed. [Castellino 1992: 32]. Castellino’s translation and commentary
miss the mathematical points completely.
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texts,[13] even when the same Akkadian words might be written logographically
in other contexts.[14] It appears that the Ur III school, concentrating solely on
producing obedient and efficient overseer scribes, had simply eliminated
problems (utilitarian as well as supra-utilitarian) from the curriculum, avoiding
thus even that modicum of independent thought that is needed to find a method
instead of following a prescribed procedure.[15]

In 2025 the periphery revolted successfully, and after another 20 years the
Ur III state collapsed, provincial rulers making themselves independent (the top-
heavy bureaucracy being probably one of several factors in the demise). The
following four centuries are spoken of as the “Old Babylonian period”. Already
during its early phase, the role of “the palace” in the economy became less
dominant. Well before 1800 BCE, a private sector had developed – even palace
land, still a major factor in the economy, was farmed ut, not cultivated by labour
troops [Leemans 1975]. A kind of banking had also developed along with a
system allowing trade in land, otherwise not allowed to leave the kinship group
[Stone 1982].

From our present perspective it is important that the scribal profession had
regained autonomy (probably gained more than it ever had). Firstly, scribes might
be employed by large-scale private economic actors, or even write private letters
as free-lance street-corner scribes – a category that had been as non-existent
before as the private letter itself. For mathematics, however, ideological autonomy
was what mattered.

An overall ideological characteristic of the period[16] was the emphasis on
individuality or personality. In the case of the scribes, this gave rise to an
enhanced professional self-awareness – if not in reality, for which we have little
direct evidence, then at least (and that is still what is important for our purpose)
in the ideas about true scribehood which the scribe school tried to inculcate.

13 Toward the very end of the Old Babylonian period, a few exceptions turn up – but only
toward the end, when new Sumerograms or pseudo-Sumerograms had been invented,
14 The argument is complex, and cannot be developed here. See [Høyrup 2002b] or (more
briefly, but drawing heavily on preceding chapters) [Høyrup 2002a: 376–378].
15 At least in private, Robert Englund would speak of a “Kapo economy” in order to
summarize the findings reported above (note 8). Even the Kapo of the KZ camp was of
course not suppose to think independently (and actually, according to the one former
Kapo I have known, thinking only independently of how to survive).
16 Obviously concerning only the literate stratum and those on whose behalf writing was
made or expressive art was created – we have no other sources for ideology, neither direct
nor indirect.
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These are reflected in a number of so-called “edubba texts” which advanced
students had to study, copy and understand.[17] They may contain dialogues
between the master and a student or between students. What is needed for true
scribehood or “humanity” (sic, that is the meaning of the Sumerian term for the
quality) is supra-utilitarian knowledge. Reading and writing Akkadian was trivial,
the scribe had to read, write and speak Sumerian, which nobody but other scribes
would understand (the Latin of recent Western European centuries comes to
mind). Knowing the syllabic values of cuneiform signs was insufficient even
though these were fully suitable for expressing the spoken language – the
requirement was familiarity with all the logographic values, including some so
secret that we do not understand what is spoken about. And also needed was
familiarity with music and mathematics – unfortunately not too specific. One
text [ed., trans. Sjöberg 1975: 167] speaks of multiplication, reciprocals, technical
coefficients, accounting and balancing of accounts, division of property and
delimitation of fields; others [Friberg 2000: 153] also refer to mensuration and
construction of trapezia (or trapezoids).

From excavations we know about the normal mathematical curriculum (in
Nippur, but the relative uniformity of scribal habits from the whole Babylonian
area allows us to generalize).[18] At first students had to copy and recopy (and
thus learn by heart) the “metrological lists”, lists of metrological units and their
multiples. Later “metrological tables” were trained, were each entry from the
metrological lists was confronted with its sexagesimal equivalent in the tacitly
assumed basic unit (cf. above, p. 9). Then followed the fundamental arithmetical
tables, and then – now we are at the level where Sumerian literature was
taught! – arithmetical squares and the determination of simple areas.

The edubba texts, we remember, speak of calculation, technical constants
and surveying, and about the partition of fields and thus geometrical calculation;
but that is where our information ends about which kind of mathematics could
be considered “humanist”. On the other hand, a large number of texts contain
sophisticated mathematics. Unfortunately, most of these texts have been excavated
illegally and have been bought by museums or private individuals on the
antiquity (or in recent decades, where UNESCO rules have been introduced,
black) market. Their appurtenance to the Old Babylonian period can only be
derived from orthography and script, and their precise origin often cannot be

17 “Edubba” means “tablet house”, that is, “school”. Various specimens are published
with translation in [Kramer 1949] and [Sjöberg 1972; 1973; 1975], cf. also [Sjöberg 1976].
18 See [Robson 2002] and [Proust 2008].
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determined with certainty. Some texts have been excavated regularly, but none
have been found in an unambiguous school contexts. All we can say is that the
format of the texts is that of school problems – often with an introductory
statement in the first person singular, a formula opening the procedure
description, which is stated in the imperative or the second person singular and
perhaps with references to the statement as something “he” has said (the actors
thus being the master, the student and the instructor, known from the edubba
texts). From the Nippur excavations it appears, however, that the more
sophisticated of these problems went beyond what was taught to normal students
even at the advanced level. In so far it is still distressingly true what Neugebauer
wrote in [1934: 204], namely that

we still know practically nothing about how Babylonian mathematics was situated
within the overall cultural framework.

The sophisticated problems may have been taught to a subgroup of students;
to such students as prepared for teaching mathematics[19]; or they may just
have been made in school format without any intention that they should really
be taught. We have no clues.

Format, indeed, need be no more than evidence for the soil from which an

Figur 6
formel dør

intellectual activity has grown. We may think of Oresme’s discussion of the
possibility that the earth and not the whole universe around it rotates every 24
hours. It belongs within a treatise written for the king. None the less, its whole
style is that of a university quaestio, and thus ultimately of a university disputa-
tion.[20] The point is also illustrated
by the adjacent “formal door”, found
in the park of the Beijing Tsinghua
University, once belonging the
emperor. It is not part of a wall, but
the artist would never have imagined
it if walls with doors had not existed.
In this sense, the sophisticated
problems may be seen to have grown
out of the school environment, irre-
spective of whether, and to whom,

19 This would be similar to one of the likely purposes of Italian abbacus algebra, also no
part of the ordinary abbacus school curriculum.
20 Le Livre du ciel et du monde, Book II, ed. [Menut & Denomy (eds) 1968: 518-538]. The
English translation is to be avoided, it misses many of the hints of university style.
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they were intended to be taught.
In the next section we shall return to the mathematics of these sophisticated

problems, which indeed represent what is normally known in histories of
mathematics as “Babylonian mathematics”. For now it suffices to take note of
what can after all be said about their geographical origin and chronology.

One group of texts (discussed in [Friberg 2000]) comes from Ur. The date
is uncertain, but almost certainly Old Babylonian, and probably relatively early –
the nineteenth century BCE is plausible. In any case, a somewhat rudimentary
problem format can already be recognized, but the problem types that dominate
the 18th-17th-century texts are absent.

A small lot of mathematical tablets have been found in the royal archives
of Mari in the north-west [Soubeyran 1984]. They date from the decades
preceding the conquest of the Mari state by Hammurapi of Babylon in 1758 BCE,
and there is no particular reason to believe they represent the whole gamut of
local mathematical culture. Most are tables of multiples and reciprocals, and thus
within the a tradition imported from Ur III.[21] One, however, is of a different
character. It is not formulated explicitly as a problem, but at least it shows that
the calculator-scribe could use his mathematics for something which looks like
fun. The text contains the earliest known version of the “chess-board problem”,
continued doublings starting with a single barley grain and passing to metrology
for larger quantities (but as in all versions prior to the diffusion of the chess
game, with 30 doublings).[22]

Much more informative are the texts found in Eshnunna in the north-east,
written between c. 1790 and c. 1775 BCE (Eshnunna was conquered by Ham-
murapi in 1761 BCE).[23] They contain not only genuine problems but also
deliberate work on creating a format for formulating problems (cf. [Høyrup 2002a:
319–326]); this format is rudimentary in the earliest text but more richly
developed in the later ones. Some of the problems concern what seems to be
real-life problems involving technical coefficients, others are clearly supra-

21 Mari had not been fully under Ur III rule, but the Ur III techniques obviously radiated
further than political control.
22 See in particular [Boyaval 1971] (a papyrus from Roman Egypt), [Folkerts 1978: 51f]
(in Propositiones ad acuendos iuvenes, a Carolingian problem collection), and [Saidan 1978:
337], the statement that “many people ask [...] about doubling one 30 times, and others
ask about doubling it 64 times” (al-Uqlı̄disı̄, Damascus, CE 952/53).
23 A text from c. 1790 is in [Baqir 1950a], others from c. 1775 are in [Baqir 1950b; 1951;
1962] and [al-Rawi & Roaf 1984].
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utilitarian, inaugurating in particular the genre that has come to be known as
“Babylonian algebra” (on which below).

Many of the problems, however, open in a way that differs from what we
find in other, probably later supra-utilitarian texts: not by an anonymous speaker
(according to the format, the teacher) stating that “I have done so and so” but
in riddle style, “If somebody asks you thus: ‘I have done so and so ...’”. One
problem (IM 53957, [Baqir 1951: 37], corrections [von Soden 1952: 52]) is a mock
calculation, in which the result is presupposed in the procedure – typical of
riddles that have not yet been fully absorbed into a properly mathematical
practice; it starts as follows:

If somebody asks you thus: to two-thirds of my two-thirds I have added hundred
s i l a of barley and my two-thirds, 1 g u r was completed. The tallum vessel of my
grain corresponding to what?

This is strikingly close to problem 37 of the Rhind mathematical Papyrus [ed.,
trans. Chace et al 1929: Plate 59] – closer than could happen by chance:

Go down I [a jug of unknown capacity] times 3 into the hekat-measure, 1/3 of me is
added to me, 1/3 of 1/3 of me is added to me, 1/9 of me is added to me; return I, filled
am I [actually the hekat-measure, not the jug]. Then what says it?

The Egyptian problem appears to be the only one in the complete corpus of
Pharaonic texts (not only mathematical texts) which makes use of an “ascending
continued fraction”, typical of Semitic languages (Arabic as well as Akkadian).
It seems reasonable to conclude that we are here confronted with a riddle
travelling (probably with Semitic-speaking merchants) between the two high
cultures, adopted in both places into the regular mathematics of the scribe
schools.[24]

This, together with the pervasive formula “If somebody” and the repeated
doublings from Mari, suggests that the scribe school, in search for supra-
utilitarian problems that might serve to demonstrate scribal “humanism”,
borrowed from oral riddle traditions. The filling and doubling problems may
both come from a merchants’ environment. The “algebra”, however, being based
on measurable line segments and areas, must have been borrowed from lay (and,
according to other evidence, Akkadian-speaking) surveyors.

24 In Egypt, the solution has also been regularized, making full use of the unit fraction
technique; later Babylonian versions of the problem are normalized to such an extent
that the family resemblance to the Egyptian problem would not be recognizable without
the Eshnunna precedent
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Comparison with sources from classical Antiquity and the Islamic Middle
Ages suggests that a restricted number of riddles about squares and rectangles
circulated within a Near Eastern surveyors’ environment: about a single square,
where the sum of or difference between the area and the side or “all four” sides
is given; about two squares, where the sum of or difference between the areas
is given together with the sum of or difference between the sides; about a
rectangle, for which the area is given together with one of the sides, the sum
of the sides or their difference; and a few more.[25] Most of them are mixed
second-degree problems, and can be solved only by means of a (geometric)
quadratic completion. The only exceptions are the two problems about a rectangle
where the area and one side are known, present already in the Sargonic
curriculum. Since all the others are absent from the Sargonic record, it seems
plausible that the trick – labelled “the Akkadian [method]” in one late Old
Babylonian text (below, p. 24) – was invented between 2200 and 1800 BCE.

Within the context of the scribe school or growing out of it, this restricted
list of standard problems was the basis for the development of an advanced
discipline. It seems (but because of the difficult dating of mathematical texts from
the southern region we cannot be sure) that it started to flourish in the former
Sumerian heartland (Larsa and Uruk are likely find-spots for the texts in
question) after Hammurapi’s conquest of Eshnunna. Later on, probably in the
17th century BCE, we also see it flourish in the north – a number of important
texts appear to come from Sippar. From late Old Babylonian Susa comes another
important text group, to which belong very sophisticated problems as well as
explicit didactical expositions probably reflecting what was only explained orally
elsewhere (translated below).

Already some twenty years after Hammurapi’s conquest of Eshnunna and
Mari, serious rebellions started in the north as well as the south, and from around
1720 the extreme south was independent; it seems that scribal high culture did
not survive in the area.

Around 1600, the Hittites raided Babylon, which was the end of the
Hammurapi dynasty and of the Old Babylonian socio-cultural complex. The
Kassites, already present in the area, probably both as labourers and as soldiers,
took over power but neither statal legitimization nor scribal culture. The ratio
between city and countryside dwellers fell to the level preceding state formation.
The scribe school with its integration of literate and calculational curriculum

25 The arguments for this are complex, and there is no space for them here. But see
[Høyrup 2001].
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disappeared. Learned scribes – those trained in Sumerian language and literature –
were from now on taught within scribal families (real families). Some surveying
and administrative activity went on, but as far as can be seen from the sources
from the time when written documents in larger quantity reappear, numeracy
(including the use of the place-value system) is likely to have been the responsi-
bility of less learned though literate staff. In any case, the advanced mathematics
of the 18th and 17th centuries did not survive, and could not be resuscitated
when the late Assyrian rulers allied themselves with the learned scribes of their
time, using them as counsellors (not least in matters astrological) and as
producers of imperial ideology. In the mid-7th century BCE Assurbanipal, the
third Mesopotamian ruler who boasted of literacy (and in his case we know it
to have been not wholly untrue), declares [Ungnad 1917: 41f] that he is able to
“find reciprocals and make difficult multiplications” – a quite modest claim, we
may find, when advanced by somebody who also asserts to be able to read tablets
from “before the flood”, that is, from pre-Sargonic times.

Something superficially similar to the Old Babylonian discipline finally turns
up in Late Babylonian times (probably in the fifth century BCE). We have one
text containing rectangle problems where the area and the sum of respectively
the difference between the sides is known, and problems about two squares with
given area difference [ed. Friberg 1997]. As we observe, these all belong to the
old collection of riddles;[26] moreover, things are now stated in area metrology,
showing that the carrying tradition must have been real surveyors, even though
the owner of the tablet was a scholar-scribe.[27] Finally, there is discontinuity
in the use of Sumerographic equivalents of Akkadian words, suggesting that
a recent re-Sumerianization had been undertaken by the scholar-scribes when
they took up mathematics once again. We can only guess at the reasons that they
did so after a millennium; somehow, it seems, the environment had become
aware (perhaps because of its being centrally involved in development of
mathematical astronomy) that mathematics belonged to the scribal tradition.

However that may be, we have too few mathematical texts from the epoch
to pursue questions about the mathematical practice and its social substratum,

26 There is ample evidence for the survival of the surveyors’ riddle tradition into Greek
Antiquity (to which we shall return), the Islamic Middle Ages with their offset in the
Latin and Italian medieval world, and even in Sanskrit Jaina mathematics. Discussing
this would lead too far, but see [Høyrup 2001].
27 Probably the same Šamas-addina who identifies himself as the owner of related text
([Friberg, Hunger & al-Rawi 1990: 545], cf. [Robson 2008: 227–237]). Neither he nor his
scribal family would have the least to do with practical surveying.
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and also too few to say anything about the cognitive character of this practice
itself. This also holds for the last epoch from where we have mathematical texts –
the Seleucid period (third and second century BCE), for which reason I shall say
no more about Late Babylonian mathematics.

Old Babylonian “algebra”

Let us turn instead to Old Babylonian “algebra”, that discipline which was
taken by Neugebauer to have inspired Greek “geometric algebra” (my quotes,
not his).

When Ernst Weidner and a few other Assyriologists started the decipherment
of the Babylonian mathematical terminology from 1916 onward, the numbers
provided the key. If an operation on 5 and 6 produces 11, it was supposed to
be an addition; if the outcome was 30, the operation had to be a multiplication.
As the task was taken up on an immensely larger scale by Neugebauer and
François Thureau-Dangin from the late 1920s onward, the same principle was
followed. That was not only natural but a necessity, and it produced important
insights. It was certainly recognized that the texts appeared to deal with the sides
and areas of rectangles and squares – but this was supposed to be metaphorical
talk (even our “square” numbers do not possess four sides).

Unfortunately, the initial successes of the method barred understanding of
its shortcomings; in particular it was not sees that an operation that could be
characterized as an addition was not thereby simply arithmetical addition (etc.).
Analysis of the total corpus of advanced mathematical texts shows that they make
use of two different additive operations; two subtractive operations; four
multiplicative operations; and that they distinguish two different halves.[28]

These distinctions cannot be explained within the purely arithmetical
interpretation that resulted from the first identification of the operations. Instead,
the squares and rectangles and their inherent geometry have to be taken
seriously. Let us first look at the simplest of all mixed second-degree problems,
ΒΜ 13901#1:[29]

28 These are not synonyms, but operations that are kept strictly apart. Many of the operations
can then be indicated by two or several synonymous terms (beyond the possibility to
write them syllabically or with logogrms).
29 The text was first published by Thureau-Dangin [1936], then (translation and translite-
ration only) in [Neugebauer 1935: III]. Here following [Høyrup 2002a: 50–52].

As can be seen from the many square brackets, the tablet is damaged; however, the
language is so standardized and so repetitive that the reconstructions are not subject to
doubt.
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1. The surfa[ce] and my confrontation I

The procedure of BM 13901 #1, in
slightly distorted proportions.

have accu[mulated]: 45´ is it. 1, the
projection,

2. you posit. The moiety of 1 you break,
[3]0´ and 30´ you make hold.

3. 15´ to 45´ you append: [close by] 1, 1 is
equal. 30´ which you have made hold

4. in the inside of 1 you tear out: 30´ the
confrontation.

The problem deals with a square, of which the
Babylonians thought primarily as a square
frame constituted by the confrontations of
equal sides, while we think of its as a surface
contained by a boundary. Our square thus is
its area and has a side, whereas that of the
Babylonians had an area and was [para-
metrized by and hence identified with] its
side, spoken of as the “confrontation”. The
(measuring numbers of the) area and the side
of this square are thus added with a sym-
metric operation that allows the addition of
measuring numbers (and hence of magnitudes
of different dimension), with result 45´ (= 3/4).
In order to make this concretely meaningful
and allow geometric manipulation of the data, the confrontation is provided with
a “projection 1”, a width 1 which transforms it into a rectangle with the same
measuring number – see the adjacent figure.[30]

I present this as well as following texts in “conformal” translation – that is, different
terms are always translated differently, the same term always in the same way, when
possible in a way that respects connotations from non-technical language. The sexagesimal
place value numbers are rendered according to a system where ´ indicates decreasing,
` increasing order of sexagesimal magnitude and ° “order zero”. These indications have
no counterpart in the written text, but the virtual absence of errors shows that the authors
of the texts must have been aware of them when they are needed (in homogeneous
problems they are not).
30 Such figures are never present on the tablets – the only diagrams which occasionally
turn up are such as illustrate the statement (but even these are rare). It would indeed
be very inconvenient to trace lines which then had to be deleted on the tablet; a likely
support is sand strew on a paved floor, for instance the courtyard of the school.
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The projection (with appurtenant rectangle) is broken into “moieties” –
“natural halves”[31] – and the outer half moved around so that the two moieties
together with the original square form a gnomon. Together, the two moieties
“hold” a rectangle (in the actual case, a square) of area 30´×30´ = 15´ ( 1/2 × 1/2 =
1/4 ). This is “appended” (an asymmetric, concrete joining operation – the other
“addition”) to the gnomon, giving an area 1 for the completed square. “Close
by” this square area 1, 1 “is equal” (namely, as side of the square). Removing
the moiety 30´ that was moved around, we are left with 30´, which represents
the side of the original square (the “confrontation”).

As we see, no explicit arguments are offered for the correctness the
procedure; but as we also notice, this correctness seems obvious – the approach
is “naïve”, as opposed to “critical”, critique being understood as investigation
of the conditions and limits of the validity of the argument.[32] This is opposed
to our ideology of how “rigorous” mathematics should be made – but not too
different from much of what is actually done: think of Georg Cantor’s theory
of sets, today justly identified as “naïve”. Closer to the level of our text, we may
look at how we solve the corresponding problem in numerical algebra (excluding
negative numbers, which the Babylonians did not possess):

x2 + 1 x = 3/4 ⇔ x2 + 1 x + ( 1/2 )2 = 3/4 + ( 1/2 )2

⇔ x2 + 1 x + ( 1/2 )2 = 1

⇔ (x + 1/2 )2 = 1

⇔ x + 1/2 = √1 = 1
⇔ x = 1 – 1/2 = 1/2 .

We could argue for the validity of each step on the basis of axioms (Euclid’s, or
a more recent version): “if equals be added to equals, the wholes are equal”,
etc. However, we rarely do it, we too are satisfied by “seeing” that everything
is correct.

The same equation transformations illustrate why the interpretation of the
texts as numerical algebra seemed convincing: the numbers we find in it coincide

31 A “natural half” is a half whose role could not possibly be taken over by any other
fraction. It does not belong to the same family as, say, 1/3 , 3/5 etc. The radius on a circle
is the natural half of the diameter; that half of the base of a triangle that is multiplied
by the height in order to yield the area is also natural.
32 “Mann kann das Vermögen der Erkenntnis aus Prinzipien a priori die reine Vernunft
und die Untersuchung der Möglichkeit und Grenzen derselben überhaupt die Kritik der
reinen Vernunft nennen”, as Kant opens the “Vorrede” to Kritik der Urteilskraft [1956: V,
237] (emphasis added).
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precisely with those appearing in the Babylonian text. This is not always the
case, sometimes the geometric foundation calls for deviations from the order
of operations that seems natural in numerical/symbolic perspective; but often
the agreement is perfect. In the present case, the difference between the two
representations is most obvious in the appearance of phrases and operations
that seem superfluous in an numerical perspective (the “projection”, “in the
inside”), and in the distinction between two different additive operations.

Beyond the shared naïve approach and agreement in the order of numbers,
one further feature of the Babylonian procedure corresponds to what we do by
equations: both are analytic, that is, they presuppose the existence of the solution
and deal with it as with any normal segment respectively number in operations
that eventually allows it to be disentangled from the relations within which it
appears.[33]

The problem just discussed belongs on a tablet with 24 problems about one
or several squares, all the others being more complex than the present one. First
follows a problem where the side has been “torn out” from the area. “Tearing
out” is a concrete subtractive operation, a removal of a magnitude from a larger
magnitude of which it is a part – the inverse operation of “appending”. The other
subtractive operation, equally concrete, is comparison – the observation that one
magnitude “goes so and so much beyond” another one. There is no subtractive
counterpart of “accumulating” (the inverse of which is a splitting into constitu-
ents, an operation which turns up in a few texts). In order to tear out a segment
from an area it therefore has to be imagined as a “broad line”, a line provided
with a virtual breadth – a notion of which there are also other traces in the
corpus.[34]

In symbolic writing, problem #2 of the tablet is thus:
(s)–s = 14`30 ,

which is interpreted geometrically as
(s,s–1) = 14`30

Once more, we are thus confronted with a rectangle, of which we know the area
and the difference between the sides. The solution follows the same pattern, only
this time we need to put back the piece we moved around in order to find s.

33 Actually, analysis defined in this way is always naïve, working with entities whose
existence has not been and cannot be argued for unless by means of a final synthesis.
Some Babylonian texts contain a final proof (in the sense of check), which may be said
to represent this synthesis.
34 The notion of “broad lines” and its presence in a number of mathematical cultures is
discussed in [Høyrup 1995].
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Problem #3 of the text introduces a new

The procedure of BM 13901 #2.

challenge, namely coefficients. The statement
runs as follows:[35]

9. The third of the surface I have torn out.

The procedure of BM 13901 #3.

The third of the confrontation to the
inside
10. of the surface I have appended: 20´

is it.

In approximate symbolic translation:
(s)– 1/3 (s)+ 1/3 s = 20´ ,

or, simplified,
2/3 (s)+ 1/3 s = 20´ .

The non-unitary coefficient of s is no serious
difficulty, we just need to replace the projection
1 by one third of it. The real challenge consists
in the non-normalized character of the problem.
In order to get around this difficulty, a change
of scale in one direction is introduced, corre-
sponding to the transformation

( 2/3 s)+ 1/3 ( 2/3 s) = 2/3 20´
or, introducing σ = 2/3 s

(σ)+ 1/3 σ = 13´20´́ .
This gives us a normalized problem, and the text
can go on as in #1. In the end, multiplication of
σ by the reciprocal of 2/3 gives s.

#2 and #3 of the text are presented in the same naïve way as #1. However,
two texts exist which give explicit didactical explanations. They are both from
Susa, a peripheral area, where a need may have been felt to write down
explanations which in the core area were only given orally (however, once the
character of the Susa explanations are known, traces of similar expositions can
be found also in texts from the core – see [Høyrup 2002a: 85].)[36]. They are

35 Following [Høyrup 2002a: 53].
36 The mathematical Susa texts were published in [1961] par E. M. Bruins and M. Rutten.
Unfortunately, the edition is problematic – not only the commentary but also the
translation; often, even the transcriptions of Sumerograms into Akkadian are mistaken.
In particular, the editors have completely overlooked the character of the didactical
explanations. Here I follow the translation and interpretation given in [Høyrup 2002a:
85–95].
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assumed to have been written toward the end of the Old Babylonian period.
Let us first look at TMS IX, an explanation of the basic tricks involved in

the operation on second-degree problems.

#1
1. The surface and 1 length accumulated, 4[0´. ¿30, the length,? 20´ the width.]
2. As 1 length to 10´ [the surface, has been appended,]
3. or 1 (as) base to 20´, [the width, has been appended,]
4. or 1°20´ [¿is posited?] to the width which 40´ together [with the length

¿holds?]
5. or 1°20´ toge〈ther〉 with 30´ the length hol[ds], 40´ (is) [its] name.
6. Since so, to 20´ the width, which is said to you,
7. 1 is appended: 1°20´ you see. Out from here
8. you ask. 40´ the surface, 1°20´ the width, the length what?
9. [30´ the length. T]hus the procedure.

#2

10. [Surface, length, and width accu]mulated, 1. By the Akkadian (method).
11. [1 to the length append.] 1 to the width append. Since 1 to the length is

appended,
12. [1 to the width is app]ended, 1 and 1 make hold, 1 you see.
13. [1 to the accumulation of length,] width and surface append, 2 you see.
14. [To 20´ the width, 1 appe]nd, 1°20´. To 30´ the length, 1 append, 1°30´.[37]

15. [¿Since? a surf]ace, that of 1°20´ the width, that of 1°30´ the

The configu-
ration de-
scribed in

TMS IX #1.

length,
16. [¿the length together with? the wi]dth, are made hold, what is

its name?
17. 2 the surface.
18. Thus the Akkadian (method).

#3

19. Surface, length, and width accumulated, 1 the surface. 3
lengths, 4 widths accumulated,

20. its [17]th to the width appended, 30´.
... ...

Section #1 explains what to do when a segment and an area
are accumulated – in the actual case, the length of a rectangular and its area;
the dimensions are already known (30´ and 20´, respectively), without which
(and in the absence of letter symbols or other naming abstract possibilities) it
would be very difficult to formulate the explanation. This, as told in line 3, is

37 The restitutions of lines 14–16 are somewhat tentative, even though the mathematical
substance is fairly well established by the parallel in lines 28–31.
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equivalent to appending a “base” 1 to the width 20´[38] – see the adjacent
diagram. This gives a rectangle with sides 1°20´and 30´ (line 4) and hence area
40´, the same as the original sum. Lines 6–8 recapitulate, and in the end a kind
of reverse calculation is made for control.

Section #2 is based on the same rectangle, still with known dimensions, but

The configuration of TMS IX
#2.

this time the area and both sides are accumulated, the sum being 1. Applying
the same trick – applying a width 1 to each of the segments[39] – still gives us

a geometrically meaningful configuration, but a
rather unhandy one: a rectangle from which a
square area is missing in a corner, see the figure;
its area is still 1. But then the two extensions are
“made hold”, producing a complementary square
of area 1×1 = 1, which fits exactly. This quadratic
completion, spoken of twice as the “Akkadian
method”, results in a rectangle of area 1+1 = 2 and
sides 1°30´ and 1°20´.

As we see, the explanations in both #1 and #2
are still fairly naïve, even though controls show that

the result is indeed as it should be. The main purpose is to build up concepts
and understanding, not to provide explicit demonstration from first principles.

After the two explanations follows a genuine problem, of which only the
statement is quoted above. In symbolic translation, we are told that

( ,w)+ +w = 1 , 1/17 (3 +4w)+w = 30´ .
The first equation is precisely the one explained in #2. The second is of a kind
which is explained in a different text, namely TMS XVI, though on somewhat
simpler examples. Even this text contains several parts (2 indeed), the first of
which runs like this:

1. [The 4th of the width, from] the length and the width to tear out, 45´. You,
45´

2. [to 4 raise, 3 you] see. 3, what is that? 4 and 1 posit,
3. [50´ and] 5´, to tear out, [posit]. 5´ to 4 raise, 1 width. 20´ to 4 raise,
4. 1°20´ you 〈see〉, 4 widths. 30´ to 4 raise, 2 you 〈see〉, 4 lengths. 20´, 1 width,

38 The translation “base” is tentative; it corresponds to what is suggested by the Sumerian
sign combination (“something standing stably/permanently on the ground”), but it is
found nowhere else.
39 This time without a name, perhaps because only one of them can be vertical and thus
be understood as a “base”.
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to tear out,
5. from 1°20´, 4 widths, tear out, 1 you see. 2, the lengths, and 1, 3 widths,

accumulate, 3 you see.
6. Igi 4 de[ta]ch, 15´ you see. 15´ to 2, lengths, raise, [3]0´ you 〈see〉, 30´ the

length.
7. 15´ to 1 raise, [1]5´ the contribution of the width. 30´ and 15´ hold.
8. Since “The 4th of the width, to tear out”, it is said to you, from 4, 1 tear out,

3 you see.
9. Igi 4 de〈tach〉, 15´ you see, 15´ to 3 raise, 45´ you 〈see〉, 45´ as much as (there

is) of [widths].
10. 1 as much as (there is) of lengths posit. 20, the true width take, 20 to 1´

raise, 20´ you see.
11. 20´ to 45´ raise, 15´ you see. 15´ from 3015´ [tear out],
12. 30´ you see, 30´ the length.

Once again, we are dealing with the

The situation of TMS XVI #1.

30´×20´-rectangle, but this time only with
the sides. In symbolic translation, we have
the equation

( +w)– 1/4 w = 45´ .
As a first step, we are told to multiply the
right-hand side 45´ by 4. The outcome is 3, and the text asks for the meaning
of this number. In order to answer, it multiplies each member to the left, finding
that 4 +(4–1)w = 4 +w is also 3 (lines 2–8). Then it goes backwards, finding the
reciprocal of 4 (“detaching” its i g i ), which is 15´, and multiplying[40] the
coefficients 3 and 4 of the new equation; it thus finds that those of the original
one – “as much as (there is) of” lengths respectively widths – are 45´ and 1
(actually, the last number is not calculated, it is probably too obvious that 4
multiplied by its reciprocal is 1). Multiplying the length and the width by their
respective coefficients gives the contribution of each to the equation, namely 20´
and 15´. Removing the latter from the sum 45´ (written in a non-standard way
corresponding to what was memorized [“held”] in line 7) is seen to give the

40 The operation is “to raise”, a multiplication used when some consideration of
proportionality is involved. The origin of the term is in volume calculation, where the
basis of a prismatic body is “raised” from the default thickness of 1 cubit to the real height.
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former, as it should.[41]

Even here, as we see, there is no deductive proof, but instead a systematic
introduction of concepts and training of intuitive understanding.

If we return to TMS IX #3, its second equation
1/17 (3 +4w)+w = 30´

is multiplied by 17, just as taught in TMS XVI, which produces an equation
3 +21w = 8°30´ .

Now both equations are transformed so as to deal with the length λ and the
width ω “of 2 the surface” (λ = +1, ω = w+1):

3λ+21ω = (3+21+8°30´) = 32°30´ , (λ,ω) = 2 .
Next the same stratagem is used

The transformed system of TMS IX #3.

as in BM 13901 #3 (but in two
dimensions), and it is found that

(3λ,21ω) = 3 21 2 = 2`6 – that
is, we have to find the sides of a
rectangle (3λ,21ω) from the
area (2`6) and the sum of the
sides (32°30´). This is a standard problem, which is solved by a cut-and-paste
procedure similar to but different from the one used when the area and the
difference between the sides is known – cf. the figure (Λ = 3λ, Ω = 21ω). Finally,
of course, first λ and ω and then and w are determined.

It should be obvious that a complex calculation like this could never have
been constructed “by trial and error” or “empirically” as sometimes maintained
by those who know only BM 13901 #1 or similar simple cases. Without insights
like those trained in TMS IX #1–2 and TMS XVI #1 (and quite a few more, for
which we have not had the luck to find the texts), they could neither have been
constructed nor solved

41 Line 10 presents a small enigma, if we remember that the indication ´ of order of
magnitude is not found in the original. Why should a “true width” 20 be multiplied by
1 so as to give “the width”? The translation presupposes that the “true width” is 20
n i n d a n = 120 m (and the true length 30 n i n d a n = 180 m). This is adequate for a real
field but unhandy in the school-yard, where instead 20´ and 30´ (2 m and 3 m) would
fit perfectly. This could be the reason that the standard “school rectangle” is (30´,20´).
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Our final text example will be YBC 6967:[42]

Obv.

The procedure of
YBC 6967.

1. [The igib]ûm over the igûm, 7 it goes beyond
2. [igûm] and igibûm what?
3. Yo[u], 7 which the igibûm
4. over the igûm goes beyond
5. to two break: 3°30´;
6. 3°30´ together with 3°30´
7. make hold: 12°15´.
8. To 12°15´ which comes up for you
9. [1` the surf]ace append: 1`12°15´.

10. [The equalside of 1`]12°15´ what? 8°30´.
11. [8°30´ and] 8°30´, its counterpart, lay down.

Rev.

1. 3°30´, the made-hold,
2. from one tear out,
3. to one append.
4. The first is 12, the second is 5.
5. 12 is the igibûm, 5 is the igûm.

Igûm and igibûm are Akkadian loanwords coming from Sumerian, meaning
respectively “the reciprocal” and “its reciprocal”. The problem thus deals with
a pair of numbers belonging together in the table of reciprocals; their product
is taken to be 60, not 1, and their difference is 7. As we see, the problem is not
geometrical at all but numerical. However, in line 9 the product is spoken of
as a “surface”, even though a term for the numerical product was at hand. The
situation is thus the mirror of what we do in analytical geometry, where we
represent geometrical entities by numbers and then work on them in a numerical
algebra. Here, numbers are represented by measurable segments and areas.

The situation – a rectangle where the area and the difference between the
sides are known – is the one we already know from BM 13901 #1 and #2, and
also the procedure is the almost same. Of course, since we deal with a rectangle,
both sides have to be found. Here something remarkable happens. For the
Babylonians, as for us, addition “naturally” precedes subtraction (cf. the order
of BM 13901 #1 and #2). Here, however, the piece which was moved is torn our

42 First published in [Neugebauer & Sachs 1945: 129], here following the translation in
[Høyrup 2002a: 55f].
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first and appended afterwards. The reason is close at hand: the same piece is
involved, and in order to appended it must in principle first be at hand, that
is, torn out.

This is not evidence of “a primitive mind not yet ready for abstraction”.
Earlier texts, for instance those from Eshnunna, in similar situations use the
phrase “to one append, from one cut off” (in this order),[43] and then give the
double result. What we see is the outcome of critique. Apparently, somebody
during the development of the discipline has discovered that the original
formulation is metatheoretically untenable, and insisted on introducing a
meaningful alternative; however, not all schools were affected by this choice,
even the late texts from Sippar use the formulation we know from Eshnunna.

This is not the only instance of critique we find in the texts. In BM 13901
#1 and TMS IX #1–2, as we remember, areas and segments were accumulated.
Obviously, it seems impossible to “append” segments to areas, since this is a
concrete and thus a meaningful operation. However, even in this case some early
texts differ, “appending” segments directly to areas, that is, presupposing that
they are “broad lines” provided in themselves with a default width of one length
unit.[44] If we also take into account that the explicit width carries different
names,[45] it seems plausible that this elimination of the default breadth is
another secondary development, caused by rejection of the ambiguous conflation
of dimensions[46] – that is, precisely, by metatheoretical critique.

What precedes is no exhaustive description of Old Babylonian “algebra”.
Making use of the representation principle (letting segments represent areas or
volumes), it was able to formulate and solve not only quadratic but also
biquadratic problems; by means of factorization or the table “equalside one
appended” (see note 10), it could solve certain irreducible equations of the third
degree; though obstructed by inadequate terminology, it might interchange the

43 To “cut off” functions as a synonym for “tearing-out”. Since it has no Sumerographic
equivalent, it is probably a borrowing from Akkadian lay surveyors.
44 One text from Eshnunna (undated, but probably also from the early 18th century BCE)
[Goetze 1951] and AO 8862 [Neugebauer 1935: I, 108–113], apparently one of the earliest
“algebraic” texts from the south.
45 Two more possibilities, employed in the text YBC 4714, are “second width” or “alternate
width”, which however represent a coefficient different from 1; see [Høyrup [2002a: 125f,
135].
46 Similar to what Plato does in The Laws 819D–820B, the passage where he speaks about
the scandal that most Greek believe that lines, surfaces and volumes are commensurate
or approximately commensurate.
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roles of unknowns and coefficients; etc. But what was presented should
demonstrate its fundamental character, which we may sum up as follows:
– Old Babylonian “algebra” was analytic, like applied equation algebra;
– its procedures were based on insight, not on blind “empirical” rules;
– but this insight was mostly naïve, only occasionally tainted by critique;
– the didactics aimed at concept formation and intuitive understanding, not

at theoretical demonstration;
– theory was indeed never made explicit: whatever theoretical insights the

authors of the texts possessed never made it into writing. Growing out of
the supra-utilitarian level of scribal cunning, even advanced Old Babylonian
mathematics always had as its aim to find the right number, exactly as was
the aim of applied scribal calculation.

A concise comparison

Comparison with the ancient Greek and Hellenistic world and its mathematics
should be made on two levels: social support, and mathematical substance.

Social support first. Obviously, practical mathematics was not absent from
the Greco-Hellenistic world, and inasfar as numbers are concerned, those engaged
in practical mathematics far exceeded those who produced theoretical mathemat-
ics (and even those who studied it seriously enough to know what deductive
proof is).[47] However, those responsible for practical calculation never possessed
the cultural hegemony which had characterized Mesopotamian calculator-scribes
until the Old Babylonian period; even that vague reflection of the former glory
of calculating mathematics which we find in Assurbanipal’s boasting of being
able to find reciprocals and to multiply is absent from classical culture. Greek
and Hellenistic mathematics, to the extent it was accepted in elite culture, was
either theoretical mathematics or somehow connected to post-Pythagorean,
gnosticizing search for wisdom. The latter current certainly drew on the
knowledge of practitioners – see [Høyrup 2001]. Yet it never admitted its debts:
how, indeed, could “wisdom” ever have come from working people?

Theoretical mathematics may also have drawn some inspiration from practical
traditions, but at large distance from the sources that have come down to us.
That is simply to be expected, and agrees with what is told by Aristotle and
Eudemos[48] – who however may have known even less than we do and may

47 Cf. [Netz 2002] and [Asper 2009].
48 Aristotle, Metaphysics Α, 980b26–981a12 (quite unspecific, about practical knowledge
preceding theoretical reflection on it) and Eudemos as used by Proclos, Commentary on
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therefore also have reconstructed the process from what is to be expected.
However, exactly concerning the so-called “geometric algebra” of Elements

II (not its use by Apollonios!) we may advance beyond expectations and “rational
reconstructions”. Already in [1963], Neugebauer had given up the belief (if he
ever held it) that the Greek learned directly from the Babylonians, and he now
asserted that what we know from the Old Babylonian texts had become common
knowledge in the whole Near East by the mid-first millennium, so there was
no need for the Greeks to read cuneiform.

This, however, is still in need of further revision. Firstly, it goes by itself,
the geometric reinterpretation of the Babylonian technique eliminates the
proposed translation from arithmetic into geometry. What the Greek mathema-
ticians may have encountered and have been inspired by was not a numerical
algebra but a geometrical technique, much closer to what we find in Elements
II. Certainly, this technique dealt with a geometry of measurable segments, which
is of course different from what presents itself in surviving Greek theoretical
geometry – but Aristotle is our witness that in his time, Greek theoretical
geometry might still consider measurable entities.[49]

In any case, Greek geometers cannot have encountered the sophisticated Old
Babylonian technique, with its use of freely chosen coefficients, factorization,
representation of areas and volumes by segments, etc., since this technique had
died with Old Babylonian scribal culture.

Closer analysis of what is found in Elements II (and in various other Greek
theoretical works, from Euclid’s Data to Diophantos’s Arithmetic), reveals that
nothing pointing back toward the Near Eastern tradition goes beyond the
collection of surveyor’s riddles, which can indeed be shown to have been around

the First Book of Euclid’s Elements 64.18–65.7, speaking (but still unspecifically) about the
beginning of geometry in Egyptian mensuration and of arithmetic with Phoenician
merchants
49 Metaphysics Μ 1078a25–29, trans. Ross in [Barnes 1984]:

The same account may be given of harmonics and optics; for neither considers its
objects qua light-ray or qua voice, but qua lines and numbers; but the latter are
attributes proper to the former. And mechanics too proceeds in the same way. Thus
if we suppose things separated from their attributes and make any inquiry concerning
them as such, we shall not for this reason be in error, any more than when one draws
a line on the ground and calls it a foot long when it is not; for the error is not
included in the propositions.

The vicinity of harmonics, optics and mechanics (as well as the whole topic of the passage)
confirms that theoretical geometry is really in Aristotle’s thought.
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in the first millennium CE and hence also in the mid-first millennium BCE.[50]

“Translation”, moreover, involves not only translations of words and concepts
but also a shift of aim. Riddles are problems and ask for a solution; nothing
similar is found in Elements II. The Euclidean propositions may at most be
characterized as the analogues of algebraic identities, and of such things we have
no evidence in the supposed source tradition.

What is really at stake can be seen if we compare

The diagram of
Elements II.6.

the cut-and-pastes procedure of BM 13901 #1 and YBC
6967 with Elements II.6. The proposition [trans. HEath
1926: I, 385] states that

If a straight line be bisected and a straight line be added
to it in a straight line, the rectangle contained by the
whole with the added straight line and the added
straight line together with the square on the half is equal
to the square on the straight line made up of the half
and the added straight line.

As we recognize, “the rectangle contained by the whole with the added straight
line and the added straight line” corresponds to the rectangle for which we know
the difference between the sides, while “the square on the half” is the quadratic
complement.

However, Euclid does not proceed by cutting, moving and pasting. His proof
starts by constructing the square CEFD and drawing the diagonal DE. Next
through B the line BHG is drawn parallel to CE or DF (H being the point where
the line cuts DE) and through H the line KM parallel to AB or EF. Finally,
through A the line AK is drawn parallel to CE or DF.

Now the diagram is ready, and with reference to the way the construction
was made AL is shown to equal HF. Adding CM to both, the gnomon
CDFGHL is seen to equal AM. Further addition of LG shows that AM
together with LG equals CF, as stated in the theorem.

So, all in all, Euclid (and his source, since this part of the Elements is probably
borrowed wholesale from earlier theoretical geometry) is able to show, on the
basis of definitions, postulates and common notions, that everything is as it
should be, provided that angles are really right according to the definition, etc.
That is, he presents us with a critique of traditional mensurational reason.

The whole sequence Elements II.1–10 can be shown in a similar manner to
be critiques of the techniques used to solve the traditional riddles. As pointed

50 Details in [Høyrup 2001].
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out by Ian Mueller [1981: 301], prop. 4–7 serve later in the Elements (not least
in book X), whereas the others are never referred to again: their substance was
apparently so familiar that it needed not be mentioned explicitly once its
reliability had been confirmed. Obviously, the whole sequence establishes nothing
new – but once the tools had been validated, they could serve further exploration,
for instance in the Conics.

So, reformulated in various ways, Neugebauer’s old idea to link Old
Babylonian “algebra” with Greek “geometric algebra” can still be upheld.

The link, however, was between very different mathematical practices. We
may return to the characteristics of Old Babylonian algebra as listed above:
– It was analytic, like applied equation algebra;
– its procedures were based on insight, not on blind “empirical” rules;
– but this insight was mostly naïve, only occasionally tainted by critique;
– the didactics aimed at concept formation and intuitive understanding, not

at theoretical demonstration;
– theory was indeed never made explicit: whatever theoretical insights the

authors of the texts possessed never made it into writing. Growing out of
the supra-utilitarian level of scribal cunning, even advanced Old Babylonian
mathematics always had as its aim to find the right number, exactly as was
the aim of applied scribal calculation.

Beginning with the last point, Greek mathematical theory was not supra-
utilitarian, it did not try to find the right number. Even Diophantos’ Arithmetic,
built up around number problems and neglecting the philosophical prohibition
of fractions, mostly tries to find one possible solution to indeterminate problems,
not the right solution.[51] Problems were certainly not absent from Greek geometry
but perhaps a no less important activity than the production of theorems to the
theoreticians – they were the medium through which one could demonstrate
his skill (and the failing skill of competitors for glory). But problem solutions
had to be demonstrably true.

So, not only when establishing theorems but also when dealing with

51 To be true, one text from Susa deals with indeterminate problems of the first degree
[Høyrup 1993]. In Diophantos. however, indeterminate problems are the rule, and
determinate problems the rare exception – concentrated moreover in book I, which collects
abstract variants of traditional “recreational” riddles and is therefore only determinate
when the models are so.
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problems, Greek theoretical mathematics was critical.[52] This does not mean,
as we know, that the results of the Greeks would not be submitted to further
critique in more recent centuries – critique is never definitive; but the Greek
theoretical mathematicians dug until the point where they thought they had found
firm ground (and when needed because critique ended up in circles, they
established a postulate on which they could build[53]).

Since the Renaissance, it is a recurrent complaint that Euclid was not
pedagogical but tried to hide the analysis which must certainly be behind his
proofs. Clearly, the Elements do not aim at establishing an intuitive grasp of
concepts. This may have many reasons, and one of them could easily be to scare
away the insufficiently gifted – as Wilbur Knorr [1983; precise wording and page
reference to be inserted] once asserted, Elements X is not meant for fun but for
repression. But there may also be a metatheoretical reason: as pointed out in
note 33, analysis is generally naïve, it makes use of entities whose existence has
not yet been established. This is clearly illustrated by the twin sister of analysis:
the indirect proof, which can indeed be characterized as analysis gone awry,
analysis which ends up by showing that the entities it deals with cannot exist.
The metatheoretical reason to avoid analysis may thus also explain (or be part
of the explanation) that indirect proofs were not used nearly as often as we might
find convenient.

So, Greek theoretical mathematics differed from Old Babylonian mathematics
in many respects. But the differences are not accidental, they turn out to
constitute a strongly connected network, defining Greek theoretical mathematics
as a practice – just as growing out from supra-utilitarian mathematics determines
Old Babylonian advanced mathematics as a different practice.

52 Within the “more physical” mathematical disciplines (the “mixed mathematics” of later
times) the situation was not as clear-cut; I speak about theoretical arithmetic and, in
particular, geometry.
53 Cf. Aristotle’s reference in Analytica posteriora I, 65a8–9 [trans. Barnes 1984] to “those
persons [...] who suppose that they are constructing parallel lines [but] fail to see that
they are assuming facts which it is impossible to demonstrate unless the parallels exist”.
Accepting that there was no way out of the circle, Euclid or a predecessor introduced
the parallel postulate.
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